Esta web utiliza cookies, puedes ver nuestra la política de cookies, aquí Si continuas navegando estás aceptándola
Política de cookies +
  • La Página de Bedri
    Libreta de apuntes
Proteínas

¿Qué son las proteínas?

Las proteínas son macromoléculas formadas por cadenas lineales de aminoácidos. El nombre proteína proviene de la palabra griega πρώτα ("prota"), que significa "lo primero" o del dios Proteo, por la cantidad de formas que pueden tomar.

Las proteínas son compuestos químicos muy complejos que se encuentran en todas las células vivas: en la sangre, en la leche, en los huevos y en toda clase de semillas y pólenes. Hay ciertos elementos químicos que todas ellas poseen, pero los diversos tipos de proteínas los contienen en diferentes cantidades. En todas se encuentran un alto porcentaje de nitrógeno, así como de oxígeno, hidrógeno y carbono. En la mayor parte de ellas existe azufre, y en algunas fósforo y hierro.

Las proteínas constituyen alrededor del 50% del peso seco de los tejidos y no existe proceso biológico alguno que no dependa de la participación de este tipo de sustancias.

Funciones

Las proteínas desempeñan un papel fundamental en los seres vivos y son las biomoléculas más versátiles y más diversas. Realizan una enorme cantidad de funciones diferentes, entre las que destacan:

  • estructural (colágeno y queratina)
  • reguladora (insulina y hormona del crecimiento)
  • transportadora (hemoglobina)
  • defensiva (anticuerpos)
  • enzimática
  • contráctil (actina y miosina)

Las funciones principales de las proteínas son:

  • Ser esenciales para el crecimiento. Las grasas y carbohidratos no las pueden sustituir, por no contener nitrógeno.
  • Proporcionan los aminoácidos esenciales fundamentales para la síntesis tisular.
  • Son materia prima para la formación de los jugos digestivos, hormonas, proteínas plasmáticas, hemoglobina, vitaminas y enzimas.
  • Funcionan como amortiguadores, ayudando a mantener la reacción de diversos medios como el plasma.
  • Actúan como catalizadores biológicos acelerando la velocidad de las reacciones químicas del metabolismo. Son las enzimas.
  • Actúan como transporte de gases como oxígeno y dióxido de carbono en sangre. (hemoglobina).
  • Actúan como defensa, los anticuerpos son proteínas de defensa natural contra infecciones o agentes extraños.
  • Permiten el movimiento celular a través de la miosina y actina (proteínas contráctiles musculares).
  • Resistencia. El colágeno es la principal proteína integrante de los tejidos de sostén.

Las proteínas determinan la forma y la estructura de las células y dirigen casi todos los procesos vitales. Las funciones de las proteínas son específicas de cada una de ellas y permiten a las células mantener su integridad, defenderse de agentes externos, reparar daños, controlar y regular funciones, etc...Todas las proteínas realizan su función de la misma manera: por unión selectiva a moléculas. Las proteínas estructurales se agregan a otras moléculas de la misma proteína para originar una estructura mayor. Sin embargo, otras proteínas se unen a moléculas distintas: los anticuerpos a los antígenos específicos, la hemoglobina al oxígeno, las enzimas a sus sustratos, los reguladores de la expresión génica al ADN, las hormonas a sus receptores específicos, etc...

Las proteínas de todo ser vivo están determinadas mayoritariamente por su genética (con excepción de algunos péptidos antimicrobianos de síntesis no ribosomal), es decir, la información genética determina en gran medida qué proteínas tiene una célula, un tejido y un organismo.

Las proteínas se sintetizan dependiendo de cómo se encuentren regulados los genes que las codifican. Por lo tanto, son susceptibles a señales o factores externos. El conjunto de las proteínas expresadas en una circunstancia determinada es denominado proteoma.

Las proteínas ocupan un lugar de máxima importancia entre las moléculas constituyentes de los seres vivos (biomoléculas). Prácticamente todos los procesos biológicos dependen de la presencia o la actividad de este tipo de moléculas. Bastan algunos ejemplos para dar idea de la variedad y trascendencia de las funciones que desempeñan. Son proteínas casi todas las enzimas, catalizadores de reacciones químicas en organismos vivientes; muchas hormonas, reguladores de actividades celulares; la hemoglobina y otras moléculas con funciones de transporte en la sangre; los anticuerpos, encargados de acciones de defensa natural contra infecciones o agentes extraños; os receptores de las células, a los cuales se fijan moléculas capaces de desencadenar una respuesta determinada; la actina y la miosina, responsables finales del acortamiento del músculo durante la contracción; el colágeno, integrante de fibras altamente resistentes en tejidos de sostén.

Función estructural

Algunas proteínas constituyen estructuras celulares:

Ciertas glicoproteínas forman parte de las membranas celulares y actúan como receptores o facilitan el transporte de sustancias.

Las histonas, forman parte de los cromosomas que regulan la expresión de los genes.

Otras proteínas confieren elasticidad y resistencia a órganos y tejidos:

  • El colágeno del tejido conjuntivo fibroso.
  • La elastina del tejido conjuntivo elástico.
  • La queratina de la epidermis.
  • Cosméticos contra el envejecimiento de la piel

Las arañas y los gusanos de seda segregan fibroina para fabricar las telas de araña y los capullos de seda, respectivamente.

Función enzimática

Las proteínas con función enzimática son las más numerosas y especializadas. Actúan como biocatalizadores de las reacciones químicas del metabolismo celular.

Función hormonal

Algunas hormonas son de naturaleza protéica, como la insulina y el glucagón (que regulan los niveles de glucosa en sangre) o las hormonas segregadas por la hipófisis como la del crecimiento o la adrenocorticotrópica (que regula la síntesis de corticosteroides) o la calcitonina (que regula el metabolismo del calcio).

Función reguladora

Algunas proteínas regulan la expresión de ciertos genes y otras regulan la división celular (como la ciclina).

Función homestática

Algunas mantienen el equilibrio osmótico y actúan junto con otros sistemas amortiguadores para mantener constante el pH del medio interno.

Función defensiva

Las inmunoglobulinas actúan como anticuerpos frente a posibles antígenos.

La trombina y el fibrinógeno contribuyen a la formación de coágulos sanguíneos para evitar hemorragias.

Las mucinas tienen efecto germicida y protegen a las mucosas.

Algunas toxinas bacterianas, como la del botulismo, o venenos de serpientes, son proteínas fabricadas con funciones defensivas.

Función de transporte

La hemoglobina transporta oxígeno en la sangre de los vertebrados.

La hemocianina transporta oxígeno en la sangre de los invertebrados.

La mioglobina transporta oxígeno en los músculos.

Las lipoproteínas transportan lípidos por la sangre.

Los citocromos transportan electrones.

Función contractil

La actina y la miosina constituyen las miofibrillas responsables de la contracción muscular.

La dineina está relacionada con el movimiento de cilios y flagelos.

Función de reserva

La ovoalbúmina de la clara de huevo, la gliadina del grano de trigo y la hordeína de la cebada, constituyen la reserva de aminoácidos para el desarrollo del embrión.

La lactoalbúmina de la leche.

Características

Las proteínas son macromoléculas; son biopolímeros, es decir, están constituidas por gran número de unidades estructurales simples repetitivas (monómeros). Debido a su gran tamaño, cuando estas moléculas se dispersan en un disolvente adecuado, forman siempre dispersiones coloidales, con características que las diferencian de las disoluciones de moléculas más pequeñas.

Por hidrólisis, las moléculas de proteína se escinden en numerosos compuestos relativamente simples, de masa pequeña, que son las unidades fundamentales constituyentes de la macromolécula. Estas unidades son los aminoácidos, de los cuales existen veinte especies diferentes y que se unen entre sí mediante enlaces peptídicos. Cientos y miles de estos aminoácidos pueden participar en la formación de la gran molécula polimérica de una proteína.

Todas las proteínas tienen carbono, hidrógeno, oxígeno y nitrógeno y casi todas poseen también azufre. Si bien hay ligeras variaciones en diferentes proteínas, el contenido de nitrógeno representa, por término medio, 16% de la masa total de la molécula; es decir, cada 6,25 g de proteína contienen 1 g de N. El factor 6,25 se utiliza para estimar la cantidad de proteína existente en una muestra a partir de la medición de nitrógeno de la misma.

La síntesis proteica es un proceso complejo cumplido por las células según las directrices de la información suministrada por los genes.

Las proteínas son largas cadenas de aminoácidos unidas por enlaces peptídicos entre el grupo carboxilo (-COOH) y el grupo amino (-NH2) de residuos de aminoácido adyacentes. La secuencia de aminoácidos en una proteína está codificada en su gen (una porción de ADN) mediante el código genético. Aunque este código genético especifica los 20 aminoácidos "estándar" más la selenocisteína y —en ciertos Archaea— la pirrolisina, los residuos en una proteína sufren a veces modificaciones químicas en la modificación postraduccional: antes de que la proteína sea funcional en la célula, o como parte de mecanismos de control. Las proteínas también pueden trabajar juntas para cumplir una función particular, a menudo asociándose para formar complejos proteicos estables.

Estructura

Es la manera como se organiza una proteína para adquirir cierta forma. Presentan una disposición característica en condiciones fisiológicas, pero si se cambian estas condiciones como temperatura, pH, etc. pierde la conformación y su función, proceso denominado desnaturalización. La función depende de la conformación y ésta viene determinada por la secuencia de aminoácidos.

Para el estudio de la estructura es frecuente considerar una división en cuatro niveles de organización, aunque el cuarto no siempre está presente.

Conformaciones o niveles estructurales de la disposición tridimensional:

  • Estructura primaria.
  • Estructura secundaria.

La estructura primaria es la secuencia de aminoácidos de la proteína. Nos indica qué aminoácidos componen la cadena polipeptídica y el orden en que dichos aminoácidos se encuentran. La función de una proteína depende de su secuencia y de la forma que ésta adopte.

La estructura secundaria es la disposición de la secuencia de aminoácidos en el espacio. Los aminoácidos, a medida que van siendo enlazados durante la síntesis de proteínas y gracias a la capacidad de giro de sus enlaces, adquieren una disposición espacial estable, la estructura secundaria.

Existen dos tipos de estructura secundaria:

la a(alfa)-hélice

Esta estructura se forma al enrollarse helicoidalmente sobre sí misma la estructura primaria. Se debe a la formación de enlaces de hidrógeno entre el -C=O de un aminoácido y el -NH- del cuarto aminoácido que le sigue.

la conformación beta

En esta disposición los aminoácidos no forman una hélice sino una cadena en forma de zigzag, denominada disposición en lámina plegada.

Presentan esta estructura secundaria la queratina de la seda o fibroína.

Nivel de dominio.

  • Estructura terciaria.
  • Estructura cuaternaria.

A partir del nivel de dominio sólo las hay globulares.

La estructura terciaria informa sobre la disposición de la estructura secundaria de un polipéptido al plegarse sobre sí misma originando una conformación globular.

En definitiva, es la estructura primaria la que determina cuál será la secundaria y por tanto la terciaria.

Esta conformación globular facilita la solubilidad en agua y así realizar funciones de transporte, enzimáticas , hormonales, etc.

Esta conformación globular se mantiene estable gracias a la existencia de enlaces entre los radicales R de los aminoácidos. Aparecen varios tipos de enlaces:

  • el puente disulfuro entre los radicales de aminoácidos que tiene azufre.
  • los puentes de hidrógeno
  • los puentes eléctricos
  • las interacciones hifrófobas.

Estructura cuaternaria: esta estructura informa de la unión , mediante enlaces débiles (no covalentes) de varias cadenas polipeptídicas con estructura terciaria, para formar un complejo proteico. Cada una de estas cadenas polipeptídicas recibe el nombre de protómero.

El número de protómeros varía desde dos como en la hexoquinasa, cuatro como en la hemoglobina, o muchos como la cápsida del virus de la poliomielitis, que consta de 60 unidades proteícas.

Propiedades de las proteínas

Solubilidad: Se mantiene siempre y cuando los enlaces fuertes y débiles estén presentes. Si se aumenta la temperatura y el pH, se pierde la solubilidad.

Las proteínas son solubles en agua cuando adoptan una conformación globular. La solubilidad es debida a los radicales (-R) libres de los aminoácidos que, al ionizarse, establecen enlaces débiles (puentes de hidrógeno) con las moléculas de agua. Así, cuando una proteína se solubiliza queda recubierta de una capa de moléculas de agua (capa de solvatación) que impide que se pueda unir a otras proteínas lo cual provocaría su precipitación (insolubilización). Esta propiedad es la que hace posible la hidratación de los tejidos de los seres vivos.

Capacidad electrolítica: Se determina a través de la electroforesis, técnica analítica en la cual si las proteínas se trasladan al polo positivo es porque su molécula tiene carga negativa y viceversa.

Especificidad: Cada proteína tiene una función específica que está determinada por su estructura primaria.

Es una de las propiedades más características y se refiere a que cada una de las especies de seres vivos es capaz de fabricar sus propias proteínas (diferentes de las de otras especies) y, aún, dentro de una misma especie hay diferencias proteicas entre los distintos individuos. Esto no ocurre con los glúcidos y lípidos, que son comunes a todos los seres vivos.

La enorme diversidad proteica interespecífica e intraespecífica es la consecuencia de las múltiples combinaciones entre los aminoácidos, lo cual está determinado por el ADN de cada individuo.

La especificidad de las proteínas explica algunos fenómenos biológicos como: la compatibilidad o no de transplantes de órganos; injertos biológicos; sueros sanguíneos; etc. o los procesos alérgicos e incluso algunas infecciones.

Amortiguador de pH (conocido como efecto tampón): Actúan como amortiguadores de pH debido a su carácter anfótero, es decir, pueden comportarse como ácidos (aceptando electrones) o como bases (donando electrones).

Las proteínas tienen un comportamiento anfótero y esto las hace capaces de neutralizar las variaciones de pH del medio, ya que pueden comportarse como un ácido o una base y por tanto liberar o retirar protones (H+) del medio donde se encuentran.

Desnaturalización de proteínas

La desnaturalización de una proteína se refiere a la ruptura de los enlaces que mantenían sus estructuras cuaternaria, terciaria y secundaria, conservándose solamente la primaria. En estos casos las proteínas se transforman en filamentos lineales y delgados que se entrelazan hasta formar compuestos fibrosos e insolubles en agua. Los agentes que pueden desnaturalizar a una proteína pueden ser: calor excesivo; sustancias que modifican el pH; alteraciones en la concentración; alta salinidad; agitación molecular; etc. El efecto más visible de éste fenómeno es que las proteínas se hacen menos solubles o insolubles y que pierden su actividad biológica.

La mayor parte de las proteínas experimentan desnaturalizaciones cuando se calientan entre 50 y 60 ºC; otras se desnaturalizan también cuando se enfrían por debajo de los 10 a 15 ºC.

La desnaturalización puede ser reversible (renaturalización) pero en muchos casos es irreversible.

Si en una disolución de proteínas se producen cambios de pH, alteraciones en la concentración, agitación molecular o variaciones bruscas de temperatura, la solubilidad de las proteínas puede verse reducida hasta el punto de producirse su precipitación. Esto se debe a que los enlaces que mantienen la conformación globular se rompen y la proteína adopta la conformación filamentosa. De este modo, la capa de moléculas de agua no recubre completamente a las moléculas proteicas, las cuales tienden a unirse entre sí dando lugar a grandes partículas que precipitan. Además, sus propiedades biocatalizadores desaparecen al alterarse el centro activo. Las proteínas que se hallan en ese estado no pueden llevar a cabo la actividad para la que fueron diseñadas, en resumen, no son funcionales.

Esta variación de la conformación se denomina desnaturalización. La desnaturalización no afecta a los enlaces peptídicos: al volver a las condiciones normales, puede darse el caso de que la proteína recupere la conformación primitiva, lo que se denomina renaturalización.

Ejemplos de desnaturalización son la leche cortada como consecuencia de la desnaturalización de la caseína, la precipitación de la clara de huevo al desnaturalizarse la ovoalbúmina por efecto del calor o la fijación de un peinado del cabello por efecto de calor sobre las queratinas del pelo.

Reacciones de reconocimiento

Reacción de Biuret

El reactivo de Biuret está formado por una disolución de sulfato de cobre en medio alcalino, este reconoce el enlace peptídico de las proteínas mediante la formación de un complejo de coordinación entre los iones Cu2+ y los pares de electrones no compartidos del nitrógeno que forma parte de los enlaces peptídicos, lo que produce una coloración rojo-violeta.

Reacción de Millon

Reconoce residuos fenólicos, o sea aquellas proteínas que contengan tirosina. Las proteínas se precipitan por acción de los ácidos inorgánicos fuertes del reactivo, dando un precipitado blanco que se vuelve gradualmente rojo al calentar.

Reacción xantoproteica

Reconoce grupos aromáticos, o sea aquellas proteínas que contengan tirosina o fenilalanina, con las cuales el ácido nítrico forma compuestos nitrados amarillos.

Determinación de la estabilidad proteica

La estabilidad de una proteína es una medida de la energía que diferencia al estado nativo de otros estados "no nativos" o desnaturalizados. Hablaremos de estabilidad termodinámica cuando podamos hacer la diferencia de energía entre el estado nativo y el desnaturalizado, para lo cual se requiere reversibilidad en el proceso de desnaturalización. Y hablaremos de estabilidad cinética cuando, dado que la proteína desnaturaliza irreversiblemente, sólo podemos diferenciar energéticamente la proteína nativa del estado de transición (el estado limitante en el proceso de desnaturalización) que da lugar al estado final. En el caso de las proteínas reversibles, también se puede hablar de estabilidad cinética, puesto que el proceso de desnaturalización también presenta un estado limitante. Actualmente se ha demostrado que algunas proteínas reversibles pueden carecer de dicho estado limitante, si bien es un tema aún controvertido en la bibliografía científica.

La determinación de la estabilidad proteica puede realizarse con diversas técnicas. La única de ellas que mide directamente los parámetros energéticos es la calorimetría (normalmente en la modalidad de calorimetría diferencial de barrido). En esta se mide la cantidad de calor que absorbe una disolución de proteína cuando es calentada, de modo que al aumentar la temperatura se produce una transición entre el estado nativo y el estado desnaturalizado que lleva asociada la absorción de una gran cantidad de calor.

El resto de técnicas miden propiedades de las proteínas que son distintas en el estado nativo y en el estado desplegado. Entre ellas se podrían citar la fluorescencia de triptófanos y tirosinas, el dicroísmo circular, radio hidrodinámico, espectroscopia infrarroja, resonancia magnética nuclear,... Una vez hemos elegido la propiedad que vamos a medir para seguir la desnaturalización de la proteína, podemos distinguir dos modalidades: Aquellas que usan como agente desnaturalizante el incremento de temperatura y aquellas que hacen uso de agentes químicos (como urea, cloruro de guanidinio, tiocianato de guanidinio, alcoholes,...). Estas últimas relacionan la concentración del agente utilizado con la energía necesaria para la desnaturalización. Una de las últimas técnicas que han emergido en el estudio de las proteínas es la microscopía de fuerza atómica. Esta técnica es cualitativamente distinta de las demás, puesto que no trabaja con sistemas macroscópicos sino con moléculas individuales. Mide la estabilidad de la proteína a través del trabajo necesario para desnaturalizarla cuando se aplica una fuerza por un extremo mientras se mantiene el otro extremo fijo a una superficie.

La importancia del estudio de la estabilidad proteica está en sus implicaciones biomédicas y biotecnológicas. Así, enfermedades como el Alzheimer o el Parkinson están relacionadas con la formación de amiloides (polímeros de proteínas desnaturalizadas). El tratamiento eficaz de estas enfermedades podría encontrarse en el desarrollo de fármacos que desestabilizaran las formas amiloidogénicas o bien que estabilizaran las formas nativas. Por otro lado, cada vez más proteínas van siendo utilizadas como fármacos. Resulta obvio que los fármacos deben presentar una estabilidad que les dé un alto tiempo de vida cuando están almacenados y un tiempo de vida limitado cuando están realizando su acción en el cuerpo humano.

En cuanto a la importancia en las aplicaciones biotecnológicas radica en que pese a su extrema eficacia catalítica su baja estabilidad dificulta su uso (muchas proteínas de potencial interés apenas mantienen su configuración nativa y funcional por unas horas).

Clasificación

Las proteínas están formadas por todos o algunos de los veinte aminoácidos existentes y se clasifican según la forma, la composición o la función que desarrollen.

Según su forma

Existen dos clases de proteínas que difieren en sus conformaciones características: "proteínas fibrosas" y "proteínas globulares". Se entiende como conformación, la orientación tridimensional que adquieren los grupos característicos de una molécula en el espacio, en virtud de la libertad de giro de éstos sobre los ejes de sus enlaces.

Las proteínas fibrosas se constituyen por cadenas polipeptídicas alineadas en forma paralela. Esta alineación puede producir dos macro-estructuras diferentes: fibras que se trenzan sobre si mismas en grupos de varios haces formando una "macro-fibra", como en el caso del colágeno de los tendones o la a-queratina del cabello; la segunda posibilidad es la formación de láminas como en el caso de las b-queratinas de las sedas naturales.

Las proteínas fibrosas poseen alta resistencia al corte por lo que son los principales soportes estructurales de los tejidos; son insolubles en agua y en soluciones salinas diliudas y en general más resistentes a los factores que las desnaturalizan.

Las proteínas globulares son conformaciones de cadenas polipeptídicas que se enrollan sobre si mismas en formas intrincadas como un "nudillo de hilo enredado" . El resultado es una macro-estructura de tipo esférico.

La mayoría de estas proteínas son solubles en agua y por lo general desempeñan funciones de transporte en el organismo. Las enzimas, cuyo papel es la catálisis de las reacciones bioquímicas, son proteínas globulares.

Fibrosas: presentan cadenas polipeptídicas largas y una estructura secundaria atípica. Son insolubles en agua y en disoluciones acuosas. Algunos ejemplos de estas son queratina, colágeno y fibrina.

Globulares: se caracterizan por doblar sus cadenas en una forma esférica apretada o compacta dejando grupos hidrófobos hacia adentro de la proteína y grupos hidrófilos hacia afuera, lo que hace que sean solubles en disolventes polares como el agua. La mayoría de las enzimas, anticuerpos, algunas hormonas y proteínas de transporte, son ejemplos de proteínas globulares.

Mixtas: posee una parte fibrilar (comúnmente en el centro de la proteína) y otra parte globular (en los extremos).

Según su composición química

Según su composición pueden clasificarse en proteínas "simples" y proteínas "conjugadas". Las "simples" o "Holoproteínas" son aquellas que al hidrolizarse producen únicamente aminoácidos, mientras que las "conjugadas" o "Heteroproteínas" son proteínas que al hidrolizarse producen también, además de los aminoácidos, otros componentes orgánicos o inorgánicos. La porción no proteica de una proteína conjugada se denomina "grupo prostético". Las proteínas conjugadas se subclasifican de acuerdo con la naturaleza de sus grupos prostéticos.

Simples: su hidrólisis sólo produce aminoácidos. Ejemplos de estas son la insulina y el colágeno (globulares y fibrosas).

Conjugadas o heteroproteínas: su hidrólisis produce aminoácidos y otras sustancias no proteicas llamadas grupo prostético.

Albúminas y globulinas: Son solubles en agua y soluciones salinas diluidas (ej.: lactoalbumina de la leche).

Glutelinas y prolaninas: Son solubles en ácidos y álcalis, se encuentran en cereales fundamentalmente el trigo. El gluten se forma a partir de una mezcla de gluteninas y gliadinas con agua.

Albuminoides: Son insolubles en agua, son fibrosas, incluyen la queratina del cabello, el colágeno del tejido conectivo y la fibrina del coagulo sanguíneo.

Proteínas conjugadas: Son las que contienen partes no proteicas. Ej.: nucleoproteínas.

Proteínas derivadas: Son producto de la hidrólisis.

Según su función

La diversidad en las funciones de las proteínas en el organismo es quizá la más extensas que se pueda atribuir a una familia de biomoléculas.

Enzimas: Son proteínas cuya función es la "catálisis de las reacciones bioquímicas". Algunas de estas reacciones son muy sencillas; otras requieren de la participación de verdaderos complejos multienzimáticos. El poder catalítico de las enzimas es extraordinario: aumentan la velocidad de una reacción, al menos un millón de veces.

Las enzimas pertenecen al grupo de las proteínas globulares y muchas de ellas son proteínas conjugadas.

Proteínas de transporte: Muchos iones y moléculas específicas son transportados por proteínas específicas. Por ejemplo, la hemoglobina transporta el oxígeno y una porción del gas carbónico desde y hacia los pulmones, respectivamente. En la membrana mitocondrial se encuentra una serie de proteínas que transportan electrones hasta el oxígeno en el proceso de respiración aeróbica.

Proteínas del movimiento coordinado: El músculo está compuesto por una variedad de proteínas fibrosas. Estas tienen la capacidad de modificar su estructura en relación con cambios en el ambiente electroquímico que las rodea y producir a nivel macro el efecto de una contracción muscular.

Proteínas estructurales o de soporte: Las proteínas fibrosas como el colágeno y las a-queratinas constituyen la estructura de muchos tejidos de soporte del organismo, como los tendones y los huesos.

Anticuerpos: Son proteínas altamente específicas que tienen la capacidad de identificar sustancias extrañas tale como los virus, las bacterias y las células de otros organismos.

Proteoreceptores: Son proteínas que participan activamente en el proceso de recepción de los impulsos nerviosos como en el caso de la "rodapsina" presente en los bastoncillos de la retina del ojo.

Hormonas y Proteínas represoras: son proteínas que participan en la regulación de procesos metabólicos; las proteínas represoras son elementos importantes dentro del proceso de transmisión de la información genética en la biosíntesis de otras moléculas.

Fuentes de proteínas

Las fuentes dietéticas de proteínas incluyen carne, huevos, soja, granos, legumbres y productos lácteos tales como queso o yogurt. Las fuentes animales de proteínas poseen los 20 aminoácidos. Las fuentes vegetales son deficientes en aminoácidos y se dice que sus proteínas son incompletas. Por ejemplo, la mayoría de las legumbres típicamente carecen de cuatro aminoácidos incluyendo el aminoácido esencial metionina, mientras los granos carecen de dos, tres o cuatro aminoácidos incluyendo el aminoácido esencial lisina. Sin embargo, para aquellas personas que tienen una dieta vegetariana, existe la opción de complementar la ingesta de proteínas de productos vegetales con diferentes tipos de aminoácidos para contrarrestar la falta de algún aminoacido componente.

Calidad proteica

Las diferentes proteínas tienen diferentes niveles de familia biológica para el cuerpo humano. Muchos aumentos han sido introducidos para medir la tasa de utilización y retención de proteínas en humanos. Éstos incluyen valor biológico, NPU (Net Protein Utilization) y PDCAAS (Protein Digestibility Corrected Amino Acids Score), la cual fue desarrollado por la FDA mejorando el PER (Protein Efficiency Ratio). Estos métodos examinan cuales proteínas son más eficientemente usadas por el organismo. En general, éstos concluyeron que las proteínas animales que contiene todos los aminoácidos esenciales (leche, huevos, carne) y la proteína de soja o soya son las más valiosas para el organismo.

Deficiencia de proteínas

Deficiencia de proteínas en el tercer mundo La deficiencia de proteína es una causa importante de enfermedad y muerte en el tercer mundo. La deficiencia de proteína juega una parte en la enfermedad conocida como kwashiorkor. La guerra, la hambruna, la sobrepoblación y otros factores incrementaron la tasa de malnutrición y deficiencia de proteínas. La deficiencia de proteína puede conducir a una inteligencia reducida o retardo mental. La malnutrición proteico-calórica afecta 500 millones de personas y más de 10 millones anualmente. En casos severos el número de glóbulos blancosdisminuye y la capacidad de los leucocitos de hacer frente a las infecciones disminuye.

La deficiencia de proteínas es rara en países desarrollados pero un pequeño número de personas tiene dificultad para obtener suficiente proteína debido a la pobreza. La deficiencia de proteína también puede ocurrir en países desarrollados en personas que están haciendo dieta para perder peso, o en adultos mayores quienes pueden tener una dieta pobre. Las personas convalecientes, recuperándose de cirugía, traumas o enfermedades pueden tener déficit proteico si no incrementan su consumo para soportar el incrementan en sus necesidades. Una deficiencia también puede ocurrir si la proteína consumida por una persona está incompleta y falla en proveer todos los aminoácidos esenciales.

Exceso de consumo de proteínas

Como el organismo es incapaz de almacenar las proteínas, el exceso de proteínas es digerido y convertido en azúcares o ácidos grasos. El hígado retira el nitrógeno de los aminoácidos, una manera de que éstos pueden ser utilizados como combustible, y el nitrógeno se incorpora en forma de urea que es excretada por los riñones que normalmente pueden soportar cualquier sobrecarga adicional pero si existe enfermedad renal pueden producirse problemas. Una dieta rica en carne puede contribuir a que se presenten niveles altos de colesterol u otras enfermedades como la gota. Una dieta rica en proteínas también puede sobrecargar los riñones.

El exceso en el consumo de proteínas también puede causar la pérdida de calcio corporal, lo cual puede conducir a pérdida de masa ósea a largo plazo. Sin embargo, varios suplementos proteicos vienen suplementados con diferentes cantidades de calcio por ración, de manera que pueden contrarrestar el efecto de la pérdida de calcio.

Algunos sospechan que el consumo excesivo de proteínas está ligado a varios problemas:

  • Hiperreactividad del sistema inmune.
  • Disfunción hepática debido a incremento de residuos tóxicos.
  • Pérdida de densidad ósea, la fragilidad de los huesos es debido a que el calcio y la glutamina son filtrados de los huesos y el tejido muscular para compensar el incremento en la ingesta de ácidos a partir de la dieta. Este efecto no esta presente si el consumo de minerales alcalinos (a partir de frutas y vegetales, los cereales son ácidos como las proteínas, las grasas son neutras) es alto.

En tales casos, el consumo de proteínas es anabólico para el hueso. Muchos investigadores piensan que un consumo excesivo de proteínas produce un incremento forzado en la excreción del calcio. Si hay consumo excesivo de proteínas, se piensa que un consumo regular de calcio seré capaz de estabilizar, o inclusive incrementar la captación de calcio por el intestino delgado, lo cual sería más beneficioso mujeres mayores.

Las proteínas son frecuentemente causa de alergias y reacciones alérgicas a ciertos alimentos. Esto ocurre porque la estructura de cada forma de proteína es ligeramente diferente, algunas pueden desencadenar una respuesta a partir del sistema inmune mientras otros permanecen perfectamente seguros. Muchas personas son alérgicas a la caseína, la proteína en la leche; al gluten, la proteína en el trigo y otros cereales; a la proteína particular encontrada en el cacahuete o maní; o aquellas encontradas en mariscos y otras comidas marinas. Es extremadamente inusual que una misma persona reaccione adversamente a más de dos tipos diferentes de proteínas, debido a la diversidad entre tipos de proteínas o aminoácidos.

Análisis de proteínas en alimentos

El clásico ensayo para medir concentración de proteínas en alimentos es el método de Kjeldahl. Este ensayo determina el nitrógeno total en una muestra. El único componente de la mayoría de los alimentos el cual contiene nitrógeno son las proteínas (las grasas, los carbohidratos y la fibra dietética no contienen nitrógeno). Si la cantidad de nitrógeno es multiplicada por un factor dependiente del tipo de proteína esperada en el alimento, la cantidad total de proteínas puede ser determinada. En las etiquetas de los alimentos, la proteína es expresada como el nitrógeno multiplicado por 6,25, porque el contenido de nitrógeno promedio de las proteínas es de aproximadamente 16%. El método de Kjeldahl es usado porque es el método que la AOAC International ha adoptado y por lo tanto es usado por varias agencias alimentarias alrededor del mundo.

Digestión de proteínas

La digestión de las proteínas se inicia típicamente en el estómago cuando el pepsinógeno es convertido a pepsina por la acción del ácido clorhídrico, y continúa por la acción de la tripsina y la quimotripsina en el intestino. Las proteínas de la dieta son degradadas a péptidos cada vez más pequeños y éstos hasta aminoácidos y sus derivados, que son absorbidos por el epitelio gastrointestinal. La tasa de absorción de los aminoácidos individuales es altamente dependiente de la fuente de proteínas; por ejemplo la digeribilidad de muchos aminoácidos en humanos difiere entre la proteína de la soja y la proteína de la leche y entre proteínas de la leche individuales, como beta-lactoglobulina y caseína. Para las proteínas de la leche, aproximadamente el 50% de la proteína ingerida se absorbe en el estómago o el yeyuno y el 90% se ha absorbido ya cuando los alimentos ingeridos alcanzan el íleon.

Además de su rol en la síntesis de proteínas, los aminoácidos también son una importante fuente nutricional de nitrógeno. Las proteínas, como los carbohidratos, contienen 4 kilocalorías por gramo, mientras que a los lípidos contienen 9 kcal y los alcoholes 7 kcal. Las proteínas pueden ser convertidas en carbohidratos a través de un proceso llamado gluconeogénesis.

Síntesis de las proteínas

Las instrucciones para la síntesis de las proteínas están codificadas en el ADN del núcleo. Sin embargo el ADN no actúa directamente, sino que transcribe su mensaje al ARNm que se encuentra en las células, una pequeña parte en el núcleo y, alrededor del 90% en el citoplasma. La síntesis de las proteínas ocurre como sigue:

El ADN del núcleo transcribe el mensaje codificado al ARNm. Una banda del ADN origina una banda complementaria de ARNm.

El ARN mensajero formado sobre el ADN del núcleo, sale a través de los poros de la membrana nuclear y llega al citoplasma donde se adhiere a un ribosoma. Allí será leído y descifrado el código o mensaje codificado que trae del ADN del núcleo.

El ARN de transferencia selecciona un aminoácido específico y lo transporta al sitio donde se encuentra el ARN mensajero. Allí engancha otros aminoácidos de acuerdo a la información codificada, y forma un polipéptido. Varias cadenas de polipéptidos se unen y constituyen las proteínas. El ARNt queda libre.

Indudablemente que estos procesos de unión o combinación se hacen a través de los tripletes nucleótidos del ARN de transferencia y del ARN mensajero. Además los ribosomas se mueven a lo largo del ARN mensajero, el cual determina qué aminoácidos van a ser utilizados y su secuencia en la cadena de polipéptidos. El ARN ribosómico, diferente del ARN y del ARNt y cuya estructura se desconoce, interviene también en el acoplamiento de aminoácidos en la cadena proteica.

Las proteínas formadas se desprenden del ribosoma y posteriormente serán utilizadas por las células. Igualmente el ARN de transferencia, es "descargado" y el ARN mensajero ya "leído" se libera del ribosoma y puede ser destruido por las enzimas celulares o leído por uno o más ribosomas.

La síntesis de las proteínas comienza por consiguiente en el núcleo, ya que allí el ADN tiene la información, pero se efectúa en el citoplasma a nivel de los ribosomas.

Transcripción del mensaje genético del ADN al ARN.

La biosíntesis de las proteínas comienza cuando un cordón de ARNm, con la ayuda de ciertas enzimas, se forma frente a un segmento de uno de los cordones de la hélice del ADN. (Las micrografías electrónicas indican que el ADN se desenrolla un poco para permitir la síntesis del ARN).

El ARNm se forma a lo largo del cordón del ADN de acuerdo con la misma regla del apareamiento de las bases que regula la formación de un cordón de ADN, excepto en que en el ARNm el uracilo sustituye a la timina. Debido al mecanismo de copia, el cordón del ARNm, cuando se ha completado lleva una transcripción fiel del mensaje del ADN. Entonces el cordón de ARNm se traslada al citoplasma en el cual se encuentran los aminoácidos, enzimas especiales, moléculas de ATP, ribosomas y moléculas de ARN de transferencia.

Una vez en el citoplasma, la molécula de ARN se une a un ribosoma. Cada tipo de ARNt engancha por un extremo a un aminoácido particular y cada uno de estos enganches implica una enzima especial y una molécula de ATP.

En el punto en el que la molécula de ARNm toca al ribosoma, una molécula de ARNt, remolcando a su aminoácido particular, se sitúa en posición inicial.

A medida que el cordón de ARNm se desplaza a lo largo del ribosoma, se sitúa en su lugar la siguiente molécula de ARNt con su aminoácido. En este punto, la primera molécula de ARNt se desengancha de la molécula de ARNm. El ARN mensajero parece tener una vida mucho más breve, al menos en Escherichia coli. La duración promedio de una molécula de ARNm en E. Coli. es de dos minutos, aunque en otro tipo de células puede ser más larga. Esto significa que en E. Coli. la producción continua de una proteína requiere una producción constante de las moléculas de ARNm apropiadas. De esta manera los cromosomas bacterianos mantienen un control muy rígido de las actividades celulares, evitando la producción de proteínas anormales que pudiera ocurrir por el posible desgaste de la molécula de ARNm.


Documentación

Kerstetter, J. E., O'Brien, K. O., Caseria, D.M, Wall, D. E. & Insogna, K. L (2005) "The impact of dietary protein on calcium absorption and kinetic measures of bone turnover in women". J Clin Endocrinol Metab (2005) Vol 90, p2631.
Rodríguez, Faride. La estructura de las proteínas.
Jimeno, Antonio; Ballesteros, Manuel; Ugedo, Luis. Biología. Fuenlabrada: Santillana, 1997. ISBN 978-84-294-8385-7
Gaudichon C, Bos C, Morens C, Petzke KJ, Mariotti F, Everwand J, Benamouzig R, Dare S, Tome D, Metges CC. (2002). Ileal losses of nitrogen and amino acids in humans and their importance to the assessment of amino acid requirements. Gastroenterology 123(1):50-9.
Mahe S, Roos N, Benamouzig R, Davin L, Luengo C, Gagnon L, Gausseunrges N, Rautureau J, Tome D. (1996). Gastrojejunal kinetics and the digestion of 15Nbeta-lactoglobulin and casein in humans: the influence of the nature and quantity of the protein. Am J Clin Nutr 63(4):546-52.
Mahe S, Marteau P, Huneau JF, Thuillier F, Tome D. (1994). Intestinal nitrogen and electrolyte movements following fermented milk ingestion in man. Br J Nutr 71(2):169-80.
http://www.aula21.net
http://www.monografias.com
http://www.nlm.nih.gov
http://www.um.es
http://es.wikipedia.org/
http://www.zonadiet.com